Two papers have been accepted to TMLR 
Title: VLM’s Eye Examination: Instruct and Inspect Visual Competency of Vision Language Models
Authors: Nam Hyeon-Woo (POSTECH), Moon Ye-Bin (POSTECH), Wonseok Choi (POSTECH), Lee Hyun (SAMSUNG), Tae-Hyun Oh (KAIST)
Vision language models (VLMs) have shown promising reasoning capabilities across various benchmarks; however, our understanding of their visual perception remains limited. In this work, we propose an eye examination process to investigate how a VLM perceives images, specifically focusing on key elements of visual recognition, from primitive color and shape to semantic levels. To this end, we introduce a dataset named LENS to guide a VLM to follow the examination and check its readiness. Once the model is ready, we conduct the examination. Through this examination, we quantify and visualize VLMs' sensitivities to color and shape, and semantic matching. Our findings reveal that VLMs have varying sensitivity to different colors while consistently showing insensitivity to green across different VLMs. Also, we found different shape sensitivity and semantic recognition depending on LLM's capacity despite using the same fixed visual encoder. Our analyses and findings have potential to inspire the design of VLMs and the pre-processing of visual input to VLMs for improving application performance.
Title: MemBench: Memorized Image Trigger Prompt Dataset for Diffusion Models
Authors: Chunsan Hong (KAIST), Tae-Hyun Oh (KAIST), Minhyuk Sung (KAIST)
Diffusion models have achieved remarkable success in Text-to-Image generation tasks, leading to the development of many commercial models. However, recent studies have reported that diffusion models often generate replicated images in train data when triggered by specific prompts, potentially raising social issues ranging from copyright to privacy concerns. To sidestep the memorization, there have been recent studies for developing memorization mitigation methods for diffusion models. Nevertheless, the lack of benchmarks impedes the assessment of the true effectiveness of these methods. In this work, we present MemBench, the first benchmark for evaluating image memorization mitigation methods. Our benchmark includes a large number of memorized image trigger prompts in various Text-to-Image diffusion models. Furthermore, in contrast to the prior work evaluating mitigation performance only on trigger prompts, we present metrics evaluating on both trigger prompts and general prompts, so that we can see whether mitigation methods address the memorization issue while maintaining performance for general prompts. This is an important development considering the practical applications which previous works have overlooked. Through evaluation on MemBench, we verify that the performance of existing image memorization mitigation methods is still insufficient for application to diffusion models.